
Nitrogen and its compounds

- 1. (i) $4HN_3(g) + 5O_{2(g)} 4NO_{(g)} + 6H_2O_{(g)}$
 - (ii) Act as catalyst
 - $(iii) Zn(NH_3)_4^{2+}$
- 2. a) Platinum/ copper
 - b) Brown fumes

V

Hot rod m continues to glow red

- NO formed reacts with oxygen to form NO_2 (brown flames)
- Reaction highly exothermic
- 3. a) Calcium hydroxide
 - b) $Ca(OH)_{2(g)} + 2NH_4CL_{(g)}$ $2NH_{3(g)} + CaCL_2 + 2H_2O_{(L)}$
- 4. (a) It neutralizes air to prevent violent combustion reaction from occurring.
 - (b) Its inert and have very low b.pt of -196°C *MAT
- 5. a) X is Nitrogen. $\sqrt{}$
 - b) It is less dense than air. $\sqrt{2}$
 - c) In preservation of semen in artificial insemination. $\sqrt{}$
- 6. a) (i) Solution A contains $Pb^{2+}(aq)$ ions $\sqrt{2}$
 - (ii) Solution B contains $Al^{3+}(aq)$ ions. $\sqrt{2}$
 - b) -A colourless liquid at cooler parts $\sqrt{}$ of test-tube is formed.
 - A white reside remains in the test-tube. $\sqrt{}$
- 7. a) to expel air that is in the combustion tube so that oxygen in it does not react with hot copper√1
 - b)brown $\sqrt{\frac{1}{2}}$ copper metal will change to black $\sqrt{\frac{1}{2}}$
 - c)nitrogen √1
- 8. (a) To increase the surface area over which the reaction occurs hence increased rate of reaction.
 - (b) NH_3 is basic and reacts with some moles of the acid hence reduction in concentration
- 9. (a) (i) The solution changes from green $\sqrt{1}$ to brown $\sqrt{1}$ (1 mk)
 - (ii) A brown $\sqrt{1}$ precipitate is formed.
- $\begin{array}{c|c} (1 \ mk) & 3 \\ \hline (1 \ mk) & \end{array}$
- (b) $Fe^{3+}_{(aq)} + 3OH_{(aq)} \longrightarrow Fe(OH)_{3(s)} \sqrt{1}$
 - $I \qquad (I \ mk)$
- 10. (a) Absorbs carbon (IV) oxide from $\sqrt{1}$ the air. (1 mk)
 - $(b) 2 Cu_{(s)} + O_2 \longrightarrow 2CuO_{(s)} \sqrt{1} \qquad (1 mk)$
 - (1 mk)
 - (c) Because it has the rare gases. $\sqrt{1}$
 - $ion CO_3$
- 11. (a) Anion $-CO_3$ Cation $-Cu^{2+}$

e) $2NH_{3(g)} + H_2SO_{4(aq)}$ ______ (NH_4) $2SO_{4(aq)}$ f) R.M.M of (NH_4) = 132 Mass of N = 28 $% N = {}^{28}/_{132}x$ 100 = 21.212%

- g) Used as a fertilizer
- 15. (a) (i) Fused calcium chloride /Cao (quick lime)
 - (ii) To remove carbon (IV) Oxide

(iii)
$$4Fe^{+}_{(s)} + 3O_{2(g)} \longrightarrow 3Fe_{2}O_{3(s)}$$

 $OR \ 3Fe_{(s)} + 2O_{2(g)} \longrightarrow Fe_{3}O_{4(s)}$

- (iv) Argon/Helium/Neon/Krepton
- (v) Provide very low temperature so that the semen does not decompose /is not destroyed
- (b) (i) Concentrated sulphurie acid

$$(ii) NaNO_{3(s)} + H_2SO_{4(l)} \longrightarrow Na_2HSO_{4(aq)} + HNO_{3(aq)}^{\checkmark} 1$$

$$Na_2SO_4 + 2HNO_3$$
(reject unbalanced chemical equation)

(b) Copper reacts with 50% nitric acid to give nitrogen II Oxide which is colourless. Air oxidizes ¹ Nitrogen II oxide to Nitrogen IV oxide which is brown.

$$2NO_{(g)} + O_2 \longrightarrow 2NO_{2(g)}$$
 colourless Brown

16. (a) (i) Nitrogen – Fractional distillation of liquid air –(½ mk)

Hydrogen - Cracking of alkanes

-Electrolysis of acidified water

(ii) Temperature $-400^{\circ}C - 500^{\circ}C$

Pressure - 400atm - 500atm

Catalyst – kinely divided iron

(iii) Catalyst P - Nickel

Gas M – Nitrogen IV oxide

$$(iv) (a) 2NO_{(g)} + O_{2(g)}$$
 $2NO_{2(g)}$

(b)
$$NO_{2(g)} + H_2O_{(l)} \longrightarrow HNO_{2(aq)} + HNO_{3(aq)}$$

- (v) To a small portion of the nitrate liquid in a test tube add equal amount o freshly prepared iron (II) sulphate followed by some drops of conc. H₂SO₄ slowly on the sides. If a brown ring forms on the boundary of the two solutions, a nitrate is confirmed.
- (vii) Manufacture of nitrogenous fertilizers
 - Manufacture of synthetic fibres e.g nylon
 - Manufacture of explosives e.g TNT
 - Manufacture of textile dyes
 - Manufacture of other acids e.g. phosphoric acid
- 17. (a) (i) Nitrogen (I) Oxides.

Rej. Dinitrogen oxides.

(ii)
$$NH_4 NO_{3(s)} \longrightarrow N_2 O_{(g)} + 2H_2 O_{(g)}$$

- (iii) The gas is soluble in cold water.
- (iv) An irritating choking smell of a gas.
- (b) (i) Platinum wire.

$$(ii) 4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(g)}$$

$$2NO_{(g)} + O_2 \longrightarrow 2NO_{2(g)}$$

(iii) Nitrogen (I) Oxide

Nitrogen (IV) Oxide.

Colourless.	Reddish brown.
Relights a glowing splint.	Extinguishes a glowing splint.
Has a sweet smell.	Irritating pungent smell.
Fairly soluble in water.	Readily soluble in water.
	(Accept any 1 correct comparative)
(c) (i) It corrodes/reacts with rubbe	` 1 2
(ii) I) Oxidized: Sulphur/S	
<u>Reduced:</u> Nitric (V) acid	$/HNO_{(aq)}$
II) It decomposes by heat in	to NO_2 which dissolves in the acid.
it through conc. Sodium Hydrox	nove dust particles by electrostatic precipitation. Then pass ide to absorb CO2. Then through condensers at 25C to er cooled to liquefy it. The liquefied air is then tygen at – 183C
b) i) X – Ammonia// NH ₃ Y- Air	
$ii)$ $4NO_{2(g)} + 2H_2O_{(s)} + O_{2(g)}$. $Accept$	
$2NO_{2(g)} + H_2O_{(l)} \underline{\hspace{1cm}}$	$\underline{\hspace{1cm}} HNO_{3(aq)} + HNO_{2(aq)}$
$2HNO_{2(aq)} + O_{2(g)} \underline{\hspace{1cm}}$	$2HNO_{3(aq)}$
iii) Through fractional disti	llation
$iv) HNO_{3(aq)} + NH_{3(g)}$	$NH4ND_{3(aq)}$
$RMM of NH_3 = 17$	$RFM of NH_4NO_3 = 80$
If $80g NH_4N$	O_3 17 g
96000	$\frac{960000}{80 \times 1000} \times 17 = 2040 \text{kg}$
(a) Potassium hydroxide solution	
(b) To remove dust particles	
(c) Water vapour Moisture (d) -183°C	
(e) Fractional distillation of liquid	air
(f) Liquid air and passed through f distils out first and liquid oxyget	ractionating column, where nitrogen with lowest B.P -196°C n with highest distil out last.
- Used as a raw material in	•
II. Air is a mixture because	
It contains gases which are not che - The gases are not in fixed ratios.	стісану сотвіней
<i>HOCL</i> _(aq) + <i>Dye HCL</i>	(aq) + [Dye + O]
Coloured	Colourless V
$H_2SO_{3(aq)} + [Dye + O] $ H	$I_2SO_{4(aa)} + Dye$
Coloured	Colourless

.

.

.

21.	a) Drying agent $\sqrt[4]{2}$ which must be CaO Method of collection $\sqrt[4]{2}$ upward delivery Workabillity $\sqrt[4]{2}$	
	b) $2NH_4CL_{(g)} + Ca(OH)_{2(g)}$ $CaCL_{2(g)} + H_2O_{(l)} + 2NH_{3(g)} \checkmark$	
22.	a) Heat b) $Cu_{(g)} + N_2O_{(g)}$ $CuO_{(g)} + N2_{(g)}$ c) - Manufacture of ammonia - In light bulbs - As a refrigerant	
23.	- At $113^{\circ}C$ consists of S_{8} rings that flow easily; - Darkens due to breaking of S_{8} rings and forming long chains consisting of thousands of atoms The chains also entangle; - The long chains consisting of thousands of atoms. The chains also entangle; - The long chains break near b.p. to form shorter one;	
24.	Difference is at the cathode electrode where in concentrated sodium chloride sodium is deposited while in dilute sodium chloride, hydrogen is liberated, because	
25.	(i) $2N_2O_{(g)} + C_{(s)} \longrightarrow Co_{2(g)} + 2N_{2(g)}$ (ii) Ammonium chloride and sodium nitrate (iii) The hydroxide ions $\sqrt{1}$ (Ammonia dissolves forming ammonia hydroxide.(1 mk)	
26.	(a) E - Ammonium chloride ($\frac{1}{2}$ mk) $F - Aluminium hydroxide (\frac{1}{2} mk) (b) Al_3 + + 3OH_{(aq)} \longrightarrow AL(OH)_{3(s)}$	
27.	a) Zinc hydroxide b) [Zn (NH3)4]2+ c) Zn ²⁺ _(aq) + 2OH _(aq) Zn (OH) 2 _(s)	
28.	a) Plantinum/platinum Rhodium $\sqrt{1}$ b) $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) \sqrt{1} + 6H_2O(l)$ c) – Fertilizers $\sqrt{1}$ - Preparation of Nitrogen (I) oxide. - Explosives	
29.	Blue ppt $\sqrt{1}$ is formed which dissolves in excess to form a deep blue $\sqrt{1}$ solution due to formation of tetra amine Copper (II) ions	
30.	(a) - Finely divided iron impregnated by alumina (Al_2O_3) - 200 atmosphere pressure - Temperature of $450^{\circ}C$ \checkmark $1/2$	
	 b) - CuO is reduced to Copper metal - NH₃ is oxidized to water and nitrogen 	
31.	(a) Colour of copper (II) Oxide changes from black to brown (b) (i) Nitrogen $/N_{2(g)}$	

(ii) Water/ $H_2O_{(l)}$